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Learn how to analyze and resolve 
production Java problems 

without panic
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For the next 60 minutes

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward
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Why are you here? Why am I here?

● You
● Technical support trying to upgrade skills
● Programmer looking for better troubleshooting tools
● Manager desiring to improve technical support

● Me
● 3 years as BEA senior tech. support engineer (DRE)
● Java professional since JDK1.0b2
● Not a guru – just sharing the collected experience
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Descriptive, not prescriptive approach

● Prescriptive approach is wishing for a silver bullet
● One cannot ask developer to 'never do something'
● Most complex problems are emergent issues
● Expensive software is great, but is usually too late

● Descriptive approach is about understanding
● Somebody will always end up doing X 
● And sometimes it is just 'Dude, Where is my log file?'
● Even if you don't know how you got there, you still have 

to fix it
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Descriptive, not prescriptive approach
● System.out.println() is NOT your friend in production
● Recompile and restart is infrequently an option
● Autowiring is good until something gets miswired
● Did anyone tell you about the firewall?
● When the system is losing more per hour than you make 

per year – this is not the time to start reading APIs
● Things are getting better, but production still runs old stuff

Problem with programmer's method
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or knowing where to look
System boundaries and choke points

● Modern programs are beyond cat, grep or sort
● Require configuration files
● Create logs
● Run in grids and clusters

● Filesystem boundary (config, log, classpath)
● Network boundary (clusters, webapps, JDBC)
● Processor and memory (multithreading)
● Environment variables (OS/user specific)
● Configuration files (XML, properties, automagic)
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Example program
public static void main(String[] args) throws Exception {
  Preferences prefs =

Preferences.userRoot().node("Boundaries");
  int port = prefs.getInt("port", 8001);
  int idx=0;
  ServerSocket socketListener = new ServerSocket(port);
  Logger logger = Logger.getLogger("Boundaries");
  while(true) {
    Socket socket = socketListener.accept();
    logger.info("Accepted connection: " + idx);
    BufferedReader in = new BufferedReader(
      new InputStreamReader(socket.getInputStream()));
    FileWriter writer = new FileWriter(args[idx++]);
    String line;
    while ((line = in.readLine()) != null) {
      writer.write(line); writer.write('\n');
}}}

//missing something?
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Filesystem
System boundaries and choke points

● Ignore relative path puzzle, look at lower level
● Currently open files (logs, locks, jars)

● More than you expect
● Process Explorer on Windows, lsof on *nix

● Transient files and file search (configs, classpath)
● The system is way busier than you expect
● Performance lessons of classpath ordering
● FileMon on Windows, trace/struss/dtrace on *nix
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Network
System boundaries and choke points

● Applications are becoming more and more chatty
● Webapps with a browser as a platform
● Webstart applications
● AJAX (quantitative change)
● Clustering
● JDBC

● Most of the traffic is over HTTP
● A lot of troubleshooting information is available, 

but it is hard to see with all the layers on the stack
● Ethernet, IP, TCP, HTTP, XML
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Processor and memory
System boundaries and choke points

● Processes are becoming more instrumentable
● Still hard to look inside, but getting better
● JVMs expose more information via JMX
● Multithreading issues will become more 

prominent
● Java thread dumps 

● There are problems with JIT and different JVMs
● Locking information was good in 1.4, incomplete in 5.0, 

improved in 6.0
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Environment variables
System boundaries and choke points

● If something is not defined anywhere in the 
program, look in the environment
● JVM version
● Default classpath
● Extensions jars

● Different in Windows and Unix
● Everything is in the files on Unix
● Windows can have it in files or in registry
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Configuration files
System boundaries and choke points

● GUI configuration does not survive meeting the 
troubleshooting reality
● Compare settings across servers
● Ultimate authority, when something is wrong

● Usually there more files than expected
● Tomcat has 23 XML files (9 types) + 3 .properties

● Good news: configuration files are parsable
● Parsable means they can be correlated

● Some things are not in the configuration files 
● Autowiring
● Defaults
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Modern JVM and its advantages
Tools and analysis methods
● JDK 5.0 and JDK 6.0 new troubleshooting tools

● jconsole, jps, jhat, jmap, jstack, jstat
● If your JVM does not cut it, look at others

● BEA JRockit – memory leak detector, console
● Look at what your O/S comes with

● DTrace on Solaris
● 3rd party tools

● Easy install – too late for complex configurations
● Minimum admin privileges – not always possible
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Filesystem boundary
Tools and analysis methods
● Currently open

● Log files, active IO, leaking handles
● Windows: ProcessExplorer/Handle from Sysinternals
● *nix: lsof

● Solves
● Resolves relative paths
● Shows leaking handles
● Default locations for log files

● From our example:
FileWriter writer = new FileWriter(args[idx++]);
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Filesystem boundary
Tools and analysis methods

● Files briefly accessed by the process
● Configuration files, classpath checking, jsp reload
● Windows: FileMon from Sysinternals
● *nix: truss/strace
● Solaris 10: dtrace

● Solves
● Configuration files not where expected
● Incorrect library version is picked up
● File (JSP) changed but not reloaded

● From our example:
● Let's look at classpath
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Tools and analysis methods
● FileMon output showing classpath search
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Network boundary
Tools and analysis methods

● Currently open connections
● Unknown configuration, leaking descriptors
● Same approach as with currently open files
● Windows: ProcessExplorer/TCPView from Sysinternals
● *nix: lsof

● From our example:
ServerSocket socketListener = new ServerSocket(port)....
Socket socket = socketListener.accept();
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Tools and analysis methods
● ProcessExplorer showing open/leaking sockets
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Network boundary
Tools and analysis methods

● Network traffic over time
● webapps, applets, Cluster replication, JDBC, LDAP
● Windows/*nix/*: Ethereal

● Open source and multi-platform
● Reads >20 tracer/tcpdump formats
● Parses > 750 protocols (including HTTP and XML)
● Custom capture/display filters
● Displays both high and low level details as needed
● Can be installed on client,server or spanning port

● A high/low level example
● Connect to http://www.news.com
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Tools and analysis methods
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Processor and memory
Tools and analysis methods

● Commercial tools are quite heavy for production
● New JVM tools are much better
● Statistical tools are for trends, not troubleshooting
● Memory leaks/allocation issues

● Use JVM tools such as jconsole/jrockit profiler
● Processor issues

● Deadlocks, livelocks, overly long execution
● Thread-dumps are your friends, but not without tools

● Different formats/capabilities for different versions/vendors
● See my presentation from JavaONE 2004 - TS-1646
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Environmental variables
Tools and analysis methods

● Environment is everything not defined explicitly
● Common interesting variables

● OS level
● PATH, CLASSPATH (unexpanded), JAVA_HOME, TEMP

● JVM provided
● Real classpath, JVM versions

● Software provided
● Version/Patch

● If different variables contradict, strange things happen
● Path may override JAVA_HOME sometimes

● Look for environment as logged by the application
● If that fails, various process tools show OS level info
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Configuration files
Tools and analysis methods

● Common types
● XML  - parsable
● name/value pairs (.properties) – usually parsable
● Defaults and autowiring – problematic for maintenance

● Locations
● Files on the filesystem
● Registry
● Inside the jars – hard to discover

● From our example
Preferences prefs = Preferences.userRoot().node("Boundaries");
 int port = prefs.getInt("port", 8001);
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Configuration files
Tools and analysis methods

● Using RegMon (from Sysinternals)
● Shows where java 5 preferences are kept by default
● Notice the leading / in /Boundaries branch
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Configuration files
Tools and analysis methods

● Working with configuration files
● Too long to read through
● Processing extracts relevant information
● Visualization highlights complex relationships

● Processing XML
● XSLT/XQuery for serious use
● XMLStarlet for prototyping

● Visualization
● Graphvis for any A->B, B->D, C->D relations
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Configuration files
Tools and analysis methods

● XMLStarlet – Unix style toolkit for XML
● Example: What ports tomcat listens on?
...\xmlstarlet-1.0.1\xml  sel -T -t

 -m //*[.//@port]
   -m ancestor::* -o -+ -b
   -v local-name()
   -o : -v @port 
   -n
 server.xml

Server:8005
-+Service:
-+-+Connector:8080
-+-+Connector:8009
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Configuration files
Tools and analysis methods

● ANT config visualisation – Grand from ggTools
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The lazy programmer
Proficiency across platforms

● If you work across multiple platforms
● Do not learn multiple tools for the same task
● Use the same editor – Vim/Emacs

● I use Vim + OTF (script 634) + JAD (script 446) 
● Use Unix/Cygwin tools – grep, find, sort, uniq
● Use the same XML processor – XMLStarlet
● Use the same network analyser – Ethereal
● Use the same image editor – Gimp

● Do not rely solely on super-environment (Eclipse)
● It will most probably not be installed on production
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The lazy programmer
Proficiency across platforms

● Vim + OTF (On-The-Fly highlighter)
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Get it before it gets you
Honing the troubleshooting skills

● Do you know what you run
● Confirm installed software version from log files
● Find where all the configuration files are
● Find where all the log files go to 
● Find out what the server does every 5 minutes

● Try flying blind
● Deploy a program the normal way, then
● Change a class and redeploy without restarting the 

server using tools installed in production only
● Read (not skim) and understand a log file

● Tools like Splunk and Apache Chainsaw may help
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Will it get easier?
Looking forward

● Things will get easier
● JVMs/OSs become more instrumentable
● New commercial and open sources products appear

● Splunk, Apache Chainsaw, Ethereal
● Things will get harder

● Multiple processors – more synchronization problems
● AJAX – control is no longer in one place

● Synchronization is now on the client
● Requests may or may not complete correctly
● Browsers are different

● SOA makes everything more distributed
● More configuration, more log files, harder to troubleshoot
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Summary
● Don't panic
● Remember the 5 boundary types
● Identify which boundary/choke point may have 

the answer
● Know the tools and how to use them
● Harmonize tools across all platforms
● Practice beforehand
● Share the knowledge
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For More Information
● Articles

● http://blogicblog.blogspot.com - my blog on this topic
● Tools

● Sysinternals: http://www.sysinternals.com/
● Vim: http://www.vim.org
● Ethereal: http://www.ethereal.com/
● XMLStarlet: http://xmlstar.sourceforge.net/
● Graphviz: http://www.graphviz.org/
● Apache Chainsaw: 

http://logging.apache.org/log4j/docs/chainsaw.html
● Splunk: http://www.splunk.com/ (commercial)

http://blogicblog.blogspot.com/
http://www.sysinternals.com/
http://www.vim.org/
http://www.ethereal.com/
http://xmlstar.sourceforge.net/
http://www.graphviz.org/
http://logging.apache.org/log4j/docs/chainsaw.html
http://www.splunk.com/
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