
 May 2006

Paradise lost:
Troubleshooting Java™ applications
outside of development sandbox

Alexandre Rafalovitch

2

Learn how to analyze and resolve
production Java problems

without panic

3

For the next 60 minutes

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

4

Let's talk about

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

5

Why are you here? Why am I here?

● You
● Technical support trying to upgrade skills
● Programmer looking for better troubleshooting tools
● Manager desiring to improve technical support

● Me
● 3 years as BEA senior tech. support engineer (DRE)
● Java professional since JDK1.0b2
● Not a guru – just sharing the collected experience

6

Let's talk about

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

7

Descriptive, not prescriptive approach

● Prescriptive approach is wishing for a silver bullet
● One cannot ask developer to 'never do something'
● Most complex problems are emergent issues
● Expensive software is great, but is usually too late

● Descriptive approach is about understanding
● Somebody will always end up doing X
● And sometimes it is just 'Dude, Where is my log file?'
● Even if you don't know how you got there, you still have

to fix it

8

Descriptive, not prescriptive approach
● System.out.println() is NOT your friend in production
● Recompile and restart is infrequently an option
● Autowiring is good until something gets miswired
● Did anyone tell you about the firewall?
● When the system is losing more per hour than you make

per year – this is not the time to start reading APIs
● Things are getting better, but production still runs old stuff

Problem with programmer's method

9

Let's talk about

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

10

or knowing where to look
System boundaries and choke points

● Modern programs are beyond cat, grep or sort
● Require configuration files
● Create logs
● Run in grids and clusters

● Filesystem boundary (config, log, classpath)
● Network boundary (clusters, webapps, JDBC)
● Processor and memory (multithreading)
● Environment variables (OS/user specific)
● Configuration files (XML, properties, automagic)

11

Example program
public static void main(String[] args) throws Exception {
 Preferences prefs =

Preferences.userRoot().node("Boundaries");
 int port = prefs.getInt("port", 8001);
 int idx=0;
 ServerSocket socketListener = new ServerSocket(port);
 Logger logger = Logger.getLogger("Boundaries");
 while(true) {
 Socket socket = socketListener.accept();
 logger.info("Accepted connection: " + idx);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 FileWriter writer = new FileWriter(args[idx++]);
 String line;
 while ((line = in.readLine()) != null) {
 writer.write(line); writer.write('\n');
}}}

//missing something?

12

Filesystem
System boundaries and choke points

● Ignore relative path puzzle, look at lower level
● Currently open files (logs, locks, jars)

● More than you expect
● Process Explorer on Windows, lsof on *nix

● Transient files and file search (configs, classpath)
● The system is way busier than you expect
● Performance lessons of classpath ordering
● FileMon on Windows, trace/struss/dtrace on *nix

13

Network
System boundaries and choke points

● Applications are becoming more and more chatty
● Webapps with a browser as a platform
● Webstart applications
● AJAX (quantitative change)
● Clustering
● JDBC

● Most of the traffic is over HTTP
● A lot of troubleshooting information is available,

but it is hard to see with all the layers on the stack
● Ethernet, IP, TCP, HTTP, XML

14

Processor and memory
System boundaries and choke points

● Processes are becoming more instrumentable
● Still hard to look inside, but getting better
● JVMs expose more information via JMX
● Multithreading issues will become more

prominent
● Java thread dumps

● There are problems with JIT and different JVMs
● Locking information was good in 1.4, incomplete in 5.0,

improved in 6.0

15

Environment variables
System boundaries and choke points

● If something is not defined anywhere in the
program, look in the environment
● JVM version
● Default classpath
● Extensions jars

● Different in Windows and Unix
● Everything is in the files on Unix
● Windows can have it in files or in registry

16

Configuration files
System boundaries and choke points

● GUI configuration does not survive meeting the
troubleshooting reality
● Compare settings across servers
● Ultimate authority, when something is wrong

● Usually there more files than expected
● Tomcat has 23 XML files (9 types) + 3 .properties

● Good news: configuration files are parsable
● Parsable means they can be correlated

● Some things are not in the configuration files
● Autowiring
● Defaults

17

Let's talk about

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

18

Modern JVM and its advantages
Tools and analysis methods
● JDK 5.0 and JDK 6.0 new troubleshooting tools

● jconsole, jps, jhat, jmap, jstack, jstat
● If your JVM does not cut it, look at others

● BEA JRockit – memory leak detector, console
● Look at what your O/S comes with

● DTrace on Solaris
● 3rd party tools

● Easy install – too late for complex configurations
● Minimum admin privileges – not always possible

19

Filesystem boundary
Tools and analysis methods
● Currently open

● Log files, active IO, leaking handles
● Windows: ProcessExplorer/Handle from Sysinternals
● *nix: lsof

● Solves
● Resolves relative paths
● Shows leaking handles
● Default locations for log files

● From our example:
FileWriter writer = new FileWriter(args[idx++]);

20

21

Filesystem boundary
Tools and analysis methods

● Files briefly accessed by the process
● Configuration files, classpath checking, jsp reload
● Windows: FileMon from Sysinternals
● *nix: truss/strace
● Solaris 10: dtrace

● Solves
● Configuration files not where expected
● Incorrect library version is picked up
● File (JSP) changed but not reloaded

● From our example:
● Let's look at classpath

22

Tools and analysis methods
● FileMon output showing classpath search

23

Network boundary
Tools and analysis methods

● Currently open connections
● Unknown configuration, leaking descriptors
● Same approach as with currently open files
● Windows: ProcessExplorer/TCPView from Sysinternals
● *nix: lsof

● From our example:
ServerSocket socketListener = new ServerSocket(port)....
Socket socket = socketListener.accept();

24

Tools and analysis methods
● ProcessExplorer showing open/leaking sockets

25

Network boundary
Tools and analysis methods

● Network traffic over time
● webapps, applets, Cluster replication, JDBC, LDAP
● Windows/*nix/*: Ethereal

● Open source and multi-platform
● Reads >20 tracer/tcpdump formats
● Parses > 750 protocols (including HTTP and XML)
● Custom capture/display filters
● Displays both high and low level details as needed
● Can be installed on client,server or spanning port

● A high/low level example
● Connect to http://www.news.com

26

Tools and analysis methods

27

Processor and memory
Tools and analysis methods

● Commercial tools are quite heavy for production
● New JVM tools are much better
● Statistical tools are for trends, not troubleshooting
● Memory leaks/allocation issues

● Use JVM tools such as jconsole/jrockit profiler
● Processor issues

● Deadlocks, livelocks, overly long execution
● Thread-dumps are your friends, but not without tools

● Different formats/capabilities for different versions/vendors
● See my presentation from JavaONE 2004 - TS-1646

28

Environmental variables
Tools and analysis methods

● Environment is everything not defined explicitly
● Common interesting variables

● OS level
● PATH, CLASSPATH (unexpanded), JAVA_HOME, TEMP

● JVM provided
● Real classpath, JVM versions

● Software provided
● Version/Patch

● If different variables contradict, strange things happen
● Path may override JAVA_HOME sometimes

● Look for environment as logged by the application
● If that fails, various process tools show OS level info

29

Configuration files
Tools and analysis methods

● Common types
● XML - parsable
● name/value pairs (.properties) – usually parsable
● Defaults and autowiring – problematic for maintenance

● Locations
● Files on the filesystem
● Registry
● Inside the jars – hard to discover

● From our example
Preferences prefs = Preferences.userRoot().node("Boundaries");
 int port = prefs.getInt("port", 8001);

30

Configuration files
Tools and analysis methods

● Using RegMon (from Sysinternals)
● Shows where java 5 preferences are kept by default
● Notice the leading / in /Boundaries branch

31

Configuration files
Tools and analysis methods

● Working with configuration files
● Too long to read through
● Processing extracts relevant information
● Visualization highlights complex relationships

● Processing XML
● XSLT/XQuery for serious use
● XMLStarlet for prototyping

● Visualization
● Graphvis for any A->B, B->D, C->D relations

32

Configuration files
Tools and analysis methods

● XMLStarlet – Unix style toolkit for XML
● Example: What ports tomcat listens on?
...\xmlstarlet-1.0.1\xml sel -T -t

 -m //*[.//@port]
 -m ancestor::* -o -+ -b
 -v local-name()
 -o : -v @port
 -n
 server.xml

Server:8005
-+Service:
-+-+Connector:8080
-+-+Connector:8009

33

Configuration files
Tools and analysis methods

● ANT config visualisation – Grand from ggTools

34

Let's talk about

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

35

The lazy programmer
Proficiency across platforms

● If you work across multiple platforms
● Do not learn multiple tools for the same task
● Use the same editor – Vim/Emacs

● I use Vim + OTF (script 634) + JAD (script 446)
● Use Unix/Cygwin tools – grep, find, sort, uniq
● Use the same XML processor – XMLStarlet
● Use the same network analyser – Ethereal
● Use the same image editor – Gimp

● Do not rely solely on super-environment (Eclipse)
● It will most probably not be installed on production

36

The lazy programmer
Proficiency across platforms

● Vim + OTF (On-The-Fly highlighter)

37

Let's talk about

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

38

Get it before it gets you
Honing the troubleshooting skills

● Do you know what you run
● Confirm installed software version from log files
● Find where all the configuration files are
● Find where all the log files go to
● Find out what the server does every 5 minutes

● Try flying blind
● Deploy a program the normal way, then
● Change a class and redeploy without restarting the

server using tools installed in production only
● Read (not skim) and understand a log file

● Tools like Splunk and Apache Chainsaw may help

39

Let's talk about

Why are you here? Why am I here?
Descriptive, not prescriptive approach
System boundaries and choke points
Tools and analysis methods
Proficiency across platforms
Honing the troubleshooting skills
Looking forward

40

Will it get easier?
Looking forward

● Things will get easier
● JVMs/OSs become more instrumentable
● New commercial and open sources products appear

● Splunk, Apache Chainsaw, Ethereal
● Things will get harder

● Multiple processors – more synchronization problems
● AJAX – control is no longer in one place

● Synchronization is now on the client
● Requests may or may not complete correctly
● Browsers are different

● SOA makes everything more distributed
● More configuration, more log files, harder to troubleshoot

41

Summary
● Don't panic
● Remember the 5 boundary types
● Identify which boundary/choke point may have

the answer
● Know the tools and how to use them
● Harmonize tools across all platforms
● Practice beforehand
● Share the knowledge

42

For More Information
● Articles

● http://blogicblog.blogspot.com - my blog on this topic
● Tools

● Sysinternals: http://www.sysinternals.com/
● Vim: http://www.vim.org
● Ethereal: http://www.ethereal.com/
● XMLStarlet: http://xmlstar.sourceforge.net/
● Graphviz: http://www.graphviz.org/
● Apache Chainsaw:

http://logging.apache.org/log4j/docs/chainsaw.html
● Splunk: http://www.splunk.com/ (commercial)

http://blogicblog.blogspot.com/
http://www.sysinternals.com/
http://www.vim.org/
http://www.ethereal.com/
http://xmlstar.sourceforge.net/
http://www.graphviz.org/
http://logging.apache.org/log4j/docs/chainsaw.html
http://www.splunk.com/

Q&A
Alexandre Rafalovitch

 May 2006

Paradise lost:
Troubleshooting Java™ applications
outside of development sandbox

Alexandre Rafalovitch
arafalov@gmail.com

